skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ritzman, Terrence"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ObjectivesLittle is known about how ilium cortical bone responds to loading. Using a mouse model, this study presents data testing the hypothesis that iliac cross‐sectional properties are altered in response to increased activity. Materials and MethodsThe sample derives from lines of High Runner (HR) mice bred for increased wheel‐running activity. Four treatment groups of female mice were tested: non‐selected control lines housed without (N = 19) and with wheels (N = 20), and HR mice housed without (N = 17) and with wheels (N = 18) for 13 weeks beginning at weaning. Each pelvis was μCT‐scanned, cross‐sectional properties (cortical area—Ct.Ar, total area—Tt.Ar, polar moment of area, and polar section modulus) were determined from the ilium midshaft, and robusticity indices (ratio of the square root ofCt.ArorTt.Arto caudal ilium length) were calculated. Mixed models were implemented with linetype, wheel access, and presence of the mini‐muscle phenotype as fixed effects, replicate line nested within linetype as a random effect, and body mass as a covariate. ResultsResults demonstrate that the mouse ilium morphologically resembles a long bone in cross section. Body mass and the mini‐muscle phenotype were significant predictors of iliac cross‐sectional properties. Wheel access only had a statistically significant effect onCt.Arand its robusticity index, with greater values in mice with wheel access. DiscussionThese results suggest that voluntary exercise increases cortical area, but does not otherwise strengthen the ilium in these mice, corroborating previous studies on the effect of increased wheel‐running activity on femoral and humeral cross‐sectional properties in these mice. 
    more » « less